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Abstract  

The work carried out in this article concerns on the implementation off a diagnostic procedure for hybrid 

dynamic systems (HDS) whose objective is to guarantee the proper functioning of industrial installations. In 

this context, the main contributions of this work are summarized into three parts: The first part is oriented to 

the modeling approach dedicated to HDS. The aim is to find an adequate model combining both aspects 

(continuous and discrete dynamics). The use of Neuro-fuzzy networks makes it possible to build a model of 

the system and to follow all the modes without it being necessary to identify or discern them. The second part 

concerns the synthesis of a fault diagnostic technique based on a fuzzy inference system. A Neuro-Fuzzy 

network based is used for residual generation, while for the residual evaluation, a fuzzy reasoning model is 

used which can mainly introduce heuristic information into the analysis scheme and takes the appropriate 

decision regarding the actual behaviour of the process. The proposed approach is successfully applied to 

monitoring faults of a non-linear three-tank system and the results confirm the effectiveness of this approach. 
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1. INTRODUCTION 

 

The Monitoring consists of two main functions 

that are the detection and diagnosis. In industrial 

installations, Faults Diagnosis is the process which, 

on the basis of the symptoms observed, makes it 

possible to identify the causes producing the 

malfunctions and consequently to isolate the faulty 

component of the system. The main diagnosis task 

consists of an estimation of the operating time 

before failure and the risk level of each failure 

modes. 

Hence the development and improvement of 

monitoring methods are essential; this is due to 

several raisons such as the increased complexity of 

systems, their specifications, customer needs... A 

class of developed approaches is deduced of the 

combination of different techniques of artificial 

intelligence and diagnostic methods. This 

combination has proved its effectiveness during its 

application through their results generated in 

industrial field. The two techniques of pattern 

recognition: fuzzy logic and neural networks, thus, 

the combination of them enables us to have a 

nervous haze system. 

In the literature, various model-based methods 

have been designed for fault detection and isolation. 

Among which state estimation [20], parameter 

estimation [11] and parity equations [8]. This class 

of methods is used to residuals generation. 

However, there are intended for linear or linearized 

systems and require a precise mathematical model 

of the system.   In theory, this assumption may be 

difficult to satisfy in practice, since real systems are 

generally nonlinear, complex, and the dynamics of 

these systems may not be known in sufficient 

detail. 

In addition, the most of systems have dynamic 

presenting double aspect in other words, behaviour 

of a continuous and/or discrete nature. 

 Furthermore another approach based on Object 

Differential Petri nets and extended Kalman filters 

was proposed in [9]. Recently many efforts have 

been devoted to the synthesis of control laws which 

improve performance and guarantee the stability of 

HDSs. However in the event of a breakdown these 

control laws become ineffective and the techniques 

for detecting and locating faults must be 

implemented to guarantee the expected 

performance of the systems. In this context,  

existing works show that Fault Detection and 

Isolation (FDI) techniques for hybrid dynamic 

systems first require the ability to identify the 

current mode each time Unfortunately the 

identification of the mode is a very difficult task 

which implies that all the modes are known and 

discernible as well as  the study of all the switching 

sequences [10].  
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To overcome these drawbacks this work mainly 

carried out around these two aspects modeling and 

diagnosis. The use of Neuro-Fuzzy networks makes 

it possible to build a model of the system and 

follow all the modes without it being necessary to 

identify or discern between them. 

 

2. NONLINEAR DYNAMIC MODELING 

 

In general and according the nature of time 

(continuous or discrete), a dynamic system is 

described by differential equations or by difference 

equations.  

In practice, it is rare that a complex system can be 

absolutely described by a knowledge model. Input-

output models of the "black box" type are often 

used, for which no knowledge of the system is 

necessary, but measures on the variables governing 

the operation of the system are essential and in 

sufficient quantity.  The modeling problem then 

becomes a nonlinear regression problem.  To model 

a given system, we distinguish different types of 

non-linear models. Depending on the choice of the 

regression vector, different structures of the non-

linear model emerge. Each of the non-linear 

structures NFIR, NARX, NOE and NARMAX is a 

possible solution.   

 

All these models can be expressed as follows:  

ym(k) =  f[φ(k)]                                        (1) 

The NARX model makes it possible to represent 

nonlinear dynamic systems whose output depends 

on past inputs and past measured outputs. 

φ(k) = [u(k − 1), … , u(k − na), y(k − 1), … , y(k

− nb)]
T                                        (2) 

The output of the NARX model 

ym(k) =  f[u(k − 1), . . , u(k − na), y(k − 1), . . , y(k

− nb)]                                           (3) 

Where: 

𝑢, 𝑦  are respectively the system inputs and outputs, 

𝑦𝑚is the output of the model. 

𝑛𝑎, 𝑛𝑏 are respectively the inputs and outputs 

delays. 

𝑓(. ) is the nonlinear function of the network. 

 and 𝜑(𝑘) is the regression vector. 

Particularly, the NARX structure represents the best 

choice when the system is deterministic or weakly 

noisy. As part of this application, we choose the 

NARX model because of its non-recursive structure 

and its parameters which are easy to estimate. 

 

 

 

 

3. NEURAL-FUZZY MODEL OF SYSTEM 

 

Generally, diagnosis is a very complex task and 

classical analytical techniques often cannot provide 

acceptable solutions to design problems. This 

explains why artificial intelligence techniques such 

as neural networks and fuzzy logic are becoming 

more and more popular in industrial diagnostic 

applications. The use of these techniques makes it 

possible to obtain interpretable results and provides 

useful information for the decision phase. The 

diagnosis task consists in two steps: residuals 

generation and decision making. The residuals are 

fault indicators generated from the available inputs 

and outputs. 

The generation process is based on a comparison 

between the observed behavior of the system and 

the reference behavior expected (predicted by a 

model). On the other hand, the decision-making 

step consists in evaluating the residues in order to 

identify and classify the detected defects. The 

residue should be close to zero under normal 

conditions (no defects). In contrast, in the faults 

occurrence, the value of this residue will be non-

zero. 

 

3.1. Neural-Fuzzy model based residual 

generation 

The major drawback of the analytical methods used 

in the diagnostic field is the fact that the use of a 

precise mathematical model is necessary. The 

mathematical model used in traditional FDI (fault 

detection and isolation) methods can be very 

sensitive to modeling errors, parameter variation, 

noise and disturbance. To avoid some of the 

difficulties of using mathematical models, it is very 

important to choose FDI algorithms that are more 

applicable to real systems. 

The general concept of generating residuals remains 

the same as for analytical models. It consists in 

comparing the outputs of the process with their 

estimates. But in this case, the estimates are 

calculated by a Neuro-Fuzzy model. The residue 

vector 𝑟(𝑡) is calculated by the difference between 

the actuator output vector 𝑦(𝑡) and the Neuro-

Fuzzy model output vector �̂�(𝑡). 
r(t) = y(t) − ŷ(t)                                                    (4) 

 

 
Fig. 1. Residual generation from the  

Neuro-Fuzzy model 

 

3.1.1. Creation of a database 

Beforehand, a database must be performed offline 

by expert knowledge. It must include the main 
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characteristics of the process (operating point, 

stability, noise, etc.). This database will be divided 

into two, a major part will be used for learning, and 

the other will be necessary for validation. Once this 

basis has been established, a structure of the Neuro-

Fuzzy network must be chosen. 

 

3.1.2. Choice of the structure of model 

The choice of the structure of Neuro-Fuzzy model 

is very important. Usually we opt for NARX 

structure, which is the best choice for the structure 

of nonlinear models if the system is deterministic or 

little noisy. This avoids the problem of stability of 

other structures such as NNARMAX, for example. 

 

3.1.3. Learning 

The weights and the biases are initially chosen 

randomly, and then adapted by a learning 

algorithm, so as to minimize the quadratic error. 

The algorithm generally used as in the context of 

our application is the Levenberg-Marquardt 

algorithm. 

 

3.1.4. Validation 

Once the network has been trained, the final 

values of the weights and biases are obtained. An 

evaluation step is needed to see if the network 

complies with the requirements set. For this, we 

perform several tests on the network. If, 

unfortunately, the network is not satisfactory, we 

must consider either modifying the network 

structure (for example: increase the orders of 

outputs or inputs) or increase the number of 

iterations of the learning phase if the network 

parameters have not yet converged sufficiently. 

 

3.2. Neuro-fuzzy model based residual 

evaluation 

The most common use of fuzzy logic in FDI 

methods is the evaluation of residuals. There are 

three main approaches in the decision process: the 

fuzzy adaptive threshold, the fuzzy classification 

and the fuzzy reasoning. 

In fuzzy logic, fuzzy reasoning, also called 

approximate reasoning, is based on fuzzy rules that 

are expressed in natural language using linguistic 

variables. A fuzzy rule will has this form: 

 

IF (x ∈ A) and (y ∈ B) THEN (z  ∈ C),               (5) 
with, A, B and C fuzzy sets. 

 

3.2.1. Fuzzification 

This is the transformation of raw data values 

into fuzzy input values. For this, we determine for 

each input and output its fuzzy membership 

function. Each residue is assigned membership 

functions which will indicate to what degree it is 

(or is not) affected by a failure. Generally we take 

as membership functions triangles or trapezoids. 

 

3.2.2. Inference 

This step determines the basis of the rules that are 

formed to determine the conditions under which the 

fault exists and under which the system is not 

faulty.  

For example: 

- IF residue1=0 and residue2=0, THEN, no failure 

has been detected. 

- IF residue1>0 and residue2<0, THEN fault1 has 

been detected. 

If the rules do not reflect the experience of an 

operator, then they can be difficult to validate. 

 

3.2.3. Defuzzification 

This is the step of creating raw output values 

from the inference sets. The output of the logical 

decision procedure is a value that provides the 

degree of presence of a failure in the system, rather 

than a simple declaration of default/non-default. 

This degree can be an indication both of the size of 

the present defect, than the certainty with which a 

defect is present in the system. Such an output is 

given for each defect considered. The absence of 

formal methods of design represents one of the 

major drawbacks to realize FDI schemes. 

 

4. APPLICATION 

 

    A hydraulic system is shown in figure (2).  

 

 
 

                          Fig. 2. Two tanks system. 

 

This system is composed of two cylindrical 

tanks of identical section   S = 0.0154 m2 

connected by pipes  C2, C3 placed respectively at 

levels 0 m and  0.5 m. The pipes  C1 and C4 

provided with valves V1 and V4 allow the liquid 

evacuation for use. Lines C2 and C3 are fitted with 

valves V2and V3. A pump P1 is used to control the 

flow Qp affecting the level of tank 1 Two levels 

sensors measuring the levels h1 and h2 in the two 

tanks. To simplify the study, it is assumed that the 

valves V1 and V2 and V3 remain constantly open. 

The pump is controlled in all or nothing so as to 

maintain h2 within a fixed interval.  

The pump flow is zero when it is stopped. When it 

operates the flow  Qp = Q0 = 0.001 m
3/h. The 

pump logic is as follows: 
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The pump is initially on. 

It is stopped when ℎ2 ≥ 0.2𝑚. 

It is started when ℎ2 ≤ 0.1𝑚. 
The valve V4 is manual. It can be opened or 

closed at any time by the user. Only two discrete 

states are considered: the state of the pipe C3 which 

can take the Empty (V) or Full (P) modes and the 

state of the valve V4 which can take the Open (O) 
or Closed (F) modes. Four modes therefore make it 

possible to characterize the behavior of the system. 

Each of them is characterized by a discrete state 

modality (pipe state C3, valve state V4), state 

equations and inequality constraints.    

The expressions of flows given by Torricelli's law 

are: 

{

Q1(t) = A1. √2g. h1(t)                               

Q2(t) = A2. S. √2. g. |h1(t) − h2(t)|       

Q4(t) = A4. √2. g. h2(t)                            

             (6) 

With: 

The pipe sections 𝐶𝑖(𝑖 = 1, … ,4),  𝐴1 = ⋯ = 𝐴4 =

3.6 × 10−5𝑚2, 𝑔 = 9.81
𝑚

𝑠2
 , 

 S= sign(h1(t) − h2(t)) 

𝑄3 can be given by three expressions depending on 

the level of the liquid in the tanks: 

Q3

=

{
 
 
 
 

 
 
 
 A3. √2g. (h1(t)—h(t)),                                          

                                            if h1 ≥ h and h2 < ℎ
 

−A3.√2g. (h2(t)—h(t)),                                         

                                                  if h1 < ℎ 𝑎𝑛𝑑 h2 > ℎ
       

A3. sign(h1(t) − h2(t)).√2. g. |h1(t) − h2(t)|  ,
 

                                             if h1 ≥ h and h2 > ℎ

                           

              (7) 

With h=0.5m 

To simplify the expression,  𝑄3(𝑡) is rewritten as 

follow: 

Q3(t) = B.√2. g. |H1(h1) − H2(h2)|                     (8) 

Where  𝐻1, 𝐻2 are functions of ℎ1 and 

ℎ2 respectively: 

H1(h1) = {
0             si h1 < ℎ
h1 − h   si h1 ≥ h

  ;                               (9) 

H2(h2) = {
0             si h2 < ℎ
h2 − h   si h2 ≥ h

                                (10) 

B = A3. sign(H1(h1) − H2(h2))                          (11) 

Expressions flows become: 

{
 
 

 
 Q1 = A.√2g. √h1                                                              

Q2 = A.√2g. √|h1 − h2|                                                  

Q3 = A.√2g. √|h1 − h|                                                   

Q4 = A.√2g. √h2                                                  (12)  

                    

This system includes two types of events: 

Controlled events: These events are associated with 

the ON/OFF commands of the valves. Events 𝑒1 

and 𝑒2  allow to open and close valve 𝑉4 at time t = 

240 s and at time t = 380 s, respectively. 

Spontaneous events: These events are internal or 

autonomous. They are generated when ℎ1and ℎ2 

exceed or do not exceed the level of water in the 

tanks. The pump is started when ℎ2  = ℎ2𝑚𝑖𝑛 =
0.1𝑚. The pump is stopped when ℎ2 = ℎ2𝑚𝑎𝑥 =
0.2𝑚. 
The continuous dynamic is described by the 

behavior of the four modes. 

 

Mode 1:  

 {
ḣ1 =

1

S
(Qp − Q1 − Q2)  

ḣ2 =
1

S
(Q2)                      

                   (13) 

 

Mode 2: 

 {
ḣ1 =

1

S
(Qp − Q1 − Q2 − Q3) 

ḣ2 =
1

S
(Q2 + Q3)                       

          (14) 

Mode 3:  

{
ḣ1 =

1

S
(Qp − Q1 − Q2 − Q3) 

ḣ2 =
1

S
(Q2 + Q3 − Q4 )            

         (15) 

Mode 4: 

 {
ḣ1 =

1

S
(Qp − Q1 − Q2)  

ḣ2 =
1

S
(Q2 − Q4 )            

                    (16) 

 

The hybrid automata representing the system in 

normal operation is given by the following figure. 

 

 

                      Fig. 3. Hybrid Automata. 

 

     In general, this system explicitly and 

simultaneously involves models with double 

dynamics continuous and event. The event part 

involves the mode notion where each mode is 

associated with its own continuous dynamic. The 
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set of modes characterizes the complete operating 

of the system. An automaton generates the 

switching from one mode to another via 

measurements and taking into account all the 

controlled and spontaneous events generated by the 

system.  

The simulation is carried out during a total 

simulation time equal to 500 s, with the following 

initial conditions: ℎ1,0 =  0.4 𝑚 𝑒𝑡 ℎ2,0 =  0 𝑚. The 

levels of liquids ℎ1and  ℎ2 are depicted by the 

figure 4. 

 

 

 
   Fig. 4. The evolution of the levels ℎ1 𝑎𝑛𝑑 ℎ2. 

 

The figure 5 illustrates the chronogram of the 

modes, in other words the evolution of the modes in 

normal operating. 

 

 
                    Fig. 5. Evolution of modes. 

 

4.1. Modeling of the system by ANFIS 

According to the functioning and the 

architecture of the system and after several tests, a 

model chosen is composed of two ANFIS 

networks: 

ĥ1(k)= 

F1 (Qp(k − 1), Qp(k − 2), h1(k − 1), h1(k − 2)) 

                (17) 

ĥ2(k) = 

F2 (Qp(k − 1), Qp(k − 2), h2(k − 1), h2(k − 2))   

                        (18)    

Where 

𝑄𝑝:  The system input, 

ℎ1 : The system output,  

ℎ2 : The system output, 

ℎ̂1 : The estimated output of ℎ1, 

ℎ̂2 : The estimated output of ℎ2. 

 

 
               Fig. 6. ANFIS 1 Network ( ℎ̂1 ). 

 

 
                   Fig. 7. ANFIS 2 ( ℎ̂2 ). 

 

     The generated residues are given in Figure (8). 

 

 
    Fig. 8. Modeling errors (residuals: No defect). 

 

In normal functioning, residues fluctuate around 

zero, their behaviors present weak fluctuations that 

are due to modeling errors. 

Now, evaluating the residual generator in fault 

presence.  In order to illustrate the proposed method 

and verify the efficiency and reliability of the 

diagnosis system, fault scenarios, noted 𝑓 are 

considered. It is assumed that there are two level 

sensors measuring the levels ℎ1 and ℎ2 in the two 

tanks. 

{
y1 = h1,
y2 = h2,

measurement sensor of h1 
measurement sensor of h2

          (19) 

 

It is assumed that these two sensors are biased 

in their measurements, that is to say we consider 

two failures 𝑓1 and 𝑓2 affecting respectively the two 



DIAGNOSTYKA, Vol. 21, No. 4 (2020)  

AChbi MS, Mhamdi L, Kechida S, Dhouibi H.: Methodology to knowledge discovery for fault diagnosis of … 

120 

sensors of ℎ1 and ℎ2 and because of this, the 

measurement equations become: 

 {
y1 = h1 + f1                                      
y2 = h2 + f2                                       

               (20) 

Another failure is considered as a loss of pump 

actuator efficiency. This system failure influences 

the differential equations. 

 

{
S. ḣ1 = Qp − Q1 − Q2 − Q3 − f3   

S. ḣ2 = Q2 + Q3 − Q4                       
                 (21) 

 

                                      Table I: Simulated Faults. 

Fault Type Fault time Fault amplitude 

𝑓1 sensor ℎ1 [100 − 150] 20% 

𝑓2 sensor ℎ2 [400 − 450] 40% 

𝑓3 actuator 𝑃1 [310 − 330] 10% 

 

Figures 9 and 10 illustrate the system behavior 

in fault occurrence. 

 

 
Fig. 9. The real and the estimated evolution  

of the level ℎ1. 

 

Analysis of the residues is achieved by a fuzzy 

model; a fuzzy reasoning model is proposed to 

classify the defects. For each residue, three 

membership functions are chosen: two trapezoidal 

and one triangular. For their parameters choice, we 

carried out numerous tests in the presence of 

several different defects.      

Residue 1: 

𝑁1 = [−1 − 1 − 0.011 − 0.011], 
𝑍1 = [−0.01 − 0.01 0.01 0.01], 
𝑃1 = [0.011 0.011 1 1] 
Residue 2:        

𝑁2 = [−1 − 1 − 0.0021 − 0.0021], 
 𝑍2 = [−0.002 − 0.002 0.002 0.002] 
𝑃2 = [0.0021 0.0021 1 1] 

Next, analysis of the fuzzy residues obtained 

previously are done using the rules of 

type "𝑖𝑓 . . , 𝑡ℎ𝑒𝑛 . . . ". 
As example:     

IF 𝑅𝑒𝑠𝑖𝑑𝑢𝑒 1 is 𝑍1, Then 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛1 = 0. (Not 

faulty). 

 

 
Fig. 10. The real and the estimated evolution  

of the level ℎ2. 

 

It is clear from figures 11 and 12, which the 

residues have values almost zero until the times of 

faults occurrence and the diagnostic system makes 

a positive decision between the two instants in the 

case where the fault affects the system. 

 
                            Fig.11. Residuals. 

 
                                Fig. 12. Decisions. 
 

5. CONCLUSION 

 

The aim of this work is to show that neuro-

fuzzy models can be used for the diagnosis of 

hybrid dynamic systems. The behavior of real 

system is determined through a hybrid automaton. 

The idea is to introduce the neuro-fuzzy concept in 

the process of residual generator and involve the 

fuzzy logic for residue treatment and decision 

phase. These residues are deduced from the 

comparison between the outputs of the hybrid 

automaton and those of the neuro-fuzzy models. 
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The proposed approach is validated with a 

simulation example and the results obtained provide 

proof of the good performance of the ANFIS 

models. These models have been used to generate 

residuals and perform fault diagnosis without the 

need to discern the modes, to estimate the current 

mode or to systematically study the switching 

sequences. 
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